Перевод: со всех языков на все языки

со всех языков на все языки

chemistry of explosives

  • 1 chemistry of explosives

    1) Военный термин: химия ВВ
    2) Оружейное производство: химия взрывчатых веществ

    Универсальный англо-русский словарь > chemistry of explosives

  • 2 chemistry of explosives

    English-Russian arms dictionary > chemistry of explosives

  • 3 chemistry of explosives

    Englsh-Russian aviation and space dictionary > chemistry of explosives

  • 4 chemistry

    химия; химический состав chemistry of explosives химия взрывчатых веществ chemistry colloidal - коллоидная химия chemistry combustion - химия горения chemistry organic - органическая химия chemistry propellant fpropulsion) - химия ракетных топлив chemistry solid-propellant - химия твердых ракетных топлив

    Англо-русский пожарно-технический словарь > chemistry

  • 5 chemistry

    Englsh-Russian aviation and space dictionary > chemistry

  • 6 chemistry

    English-Russian military dictionary > chemistry

  • 7 explosives chemistry

    Военный термин: химия ВВ

    Универсальный англо-русский словарь > explosives chemistry

  • 8 explosives chemistry

    English-Russian military dictionary > explosives chemistry

  • 9 химия ВВ

    Универсальный русско-английский словарь > химия ВВ

  • 10 химия взрывчатых веществ

    Arms production: chemistry of explosives

    Универсальный русско-английский словарь > химия взрывчатых веществ

  • 11 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 12 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 13 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 14 Nobel, Alfred Bernhard

    [br]
    b. 21 October 1833 Stockholm, Sweden
    d. 10 December 1896 San Remo, Italy
    [br]
    Swedish industrialist, inventor of dynamite, founder of the Nobel Prizes.
    [br]
    Alfred's father, Immanuel Nobel, builder, industrialist and inventor, encouraged his sons to follow his example of inventiveness. Alfred's education was interrupted when the family moved to St Petersburg, but was continued privately and was followed by a period of travel. He thus acquired a good knowledge of chemistry and became an excellent linguist.
    During the Crimean War, Nobel worked for his father's firm in supplying war materials. The cancellation of agreements with the Russian Government at the end of the war bankrupted the firm, but Alfred and his brother Immanuel continued their interest in explosives, working on improved methods of making nitroglycerine. In 1863 Nobel patented his first major invention, a detonator that introduced the principle of detonation by shock, by using a small charge of nitroglycerine in a metal cap with detonating or fulminating mercury. Two years later Nobel set up the world's first nitroglycerine factory in an isolated area outside Stockholm. This led to several other plants and improved methods for making and handling the explosive. Yet Nobel remained aware of the dangers of liquid nitroglycerine, and after many experiments he was able in 1867 to take out a patent for dynamite, a safe, solid and pliable form of nitroglycerine, mixed with kieselguhr. At last, nitroglycerine, discovered by Sobrero in 1847, had been transformed into a useful explosive; Nobel began to promote a worldwide industry for its manufacture. Dynamite still had disadvantages, and Nobel continued his researches until, in 1875, he achieved blasting gelatin, a colloidal solution of nitrocellulose (gun cotton) in nitroglycerine. In many ways it proved to be the ideal explosive, more powerful than nitroglycerine alone, less sensitive to shock and resistant to moisture. It was variously called Nobel's Extra Dynamite, blasting gelatin and gelignite. It immediately went into production.
    Next, Nobel sought a smokeless powder for military purposes, and in 1887 he obtained a nearly smokeless blasting powder using nitroglycerine and nitrocellulose with 10 per cent camphor. Finally, a progressive, smokeless blasting powder was developed in 1896 at his San Remo laboratory.
    Nobel's interests went beyond explosives into other areas, such as electrochemistry, optics and biology; his patents amounted to 355 in various countries. However, it was the manufacture of explosives that made him a multimillionaire. At his death he left over £2 million, which he willed to funding awards "to those who during the preceding year, shall have conferred the greatest benefit on mankind".
    [br]
    Bibliography
    1875, On Modern Blasting Agents, Glasgow (his only book).
    Further Reading
    H.Schuck et al., 1962, Nobel, the Man and His Prizes, Amsterdam.
    E.Bergengren, 1962, Alfred Nobel, the Man and His Work, London and New York (includes a supplement on the prizes and the Nobel institution).
    LRD

    Biographical history of technology > Nobel, Alfred Bernhard

  • 15 вещества

    2) Perfume: materials
    3) Makarov: moieties (и т.п. в зависимости от контекста), substances

    Универсальный русско-английский словарь > вещества

  • 16 אצטין

    acetin, colorless hygroscopic liquid used in the production of explosives (Chemistry)

    Hebrew-English dictionary > אצטין

  • 17 Messel, Rudolf

    SUBJECT AREA: Chemical technology
    [br]
    b. 14 January 1848 Darmstadt, Germany
    d. 18 April 1920 London, England
    [br]
    German industrial chemist.
    [br]
    Messel served three years as an apprentice to the chemical manufacturers E.Lucius of Frankfurt before studying chemistry at Zürich, Heidelberg and Tübingen. In 1870 he travelled to England to assist the distinguished chemist Sir Henry Roscoe, but was soon recalled to Germany on the outbreak of the Franco-Prussian War. After hostilities ceased, Messel returned to London to join the firm of manufacturers of sulphuric acid Dunn, Squire \& Company of Stratford, London. The firm amalgamated with Spencer Chapman, and after Messel became its Managing Director in 1878 it was known as Spencer, Chapman \& Messel Ltd.
    Messel's principal contribution to chemical technology was the invention of the contact process for the manufacture of sulphuric acid. Earlier processes for making this essential product, now needed in ever-increasing quantities by the new processes for making dyestuffs, fertilizers and explosives, were based on the oxidation of sulphur dioxide by oxides of nitrogen, developed by Joshua Ward and John Roebuck. Attempts to oxidize the dioxide to the trioxide with the oxygen in the air in the presence of a suitable catalyst had so far failed because the catalyst had become "poisoned" and ineffective; Messel avoided this by using highly purified gases. The contact process produced a concentrated form of sulphuric acid called oleum. Until the outbreak of the First World War, Messel's firm was the principal manufacturer, but then the demand rose sharply, so that other firms had to engage in its manufacture. Production thereby increased from 20,000 to 450,000 tons per year.
    [br]
    Principal Honours and Distinctions
    FRS 1912. President, Society of Chemical Industry 1911–12, 1914.
    Further Reading
    1931, Special jubilee issue, Journal of the Society of the Chemical Industry (July). G.T.Morgan and D.D.Pratt, 1938, The British Chemical Industry, London.
    LRD

    Biographical history of technology > Messel, Rudolf

См. также в других словарях:

  • Chemistry & Industry —   Titre abrégé Chem. Ind. Discipline Chimie Langue …   Wikipédia en Français

  • chemistry — /kem euh stree/, n., pl. chemistries. 1. the science that deals with the composition and properties of substances and various elementary forms of matter. Cf. element (def. 2). 2. chemical properties, reactions, phenomena, etc.: the chemistry of… …   Universalium

  • Chemistry Centre WA — The Chemistry Centre is an analytical chemistry facility in Perth, Western Australia. It has an extensive history and delivers analytical, consultative and investigative chemical services to a range of government agency, industry and research… …   Wikipedia

  • Clandestine chemistry — is chemistry carried out in secret, and particularly in illegal drug laboratories. Larger labs are usually run by gangs or organized crime intending to produce for distribution on the black market. Smaller labs can be run by individual chemists… …   Wikipedia

  • HAZMAT Class 1 Explosives — Explosives are any substance or article, including a device, which is designed to function by explosion or which, by chemical reaction within itself is able to function in a similar manner even if not designed to function by explosion (unless the …   Wikipedia

  • Propellants, Explosives, Pyrotechnics —   Titre abrégé Propellants Explos. Pyrotech. PEP Discipline …   Wikipédia en Français

  • Organic chemistry — Structure of the methane molecule: the simplest hydrocarbon compound. Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by… …   Wikipedia

  • Journal of Combinatorial Chemistry —   Titre abrégé J. Comb. Chem. Discipline Chimie Langue …   Wikipédia en Français

  • Amateur chemistry — or home chemistry is the pursuit of chemistry as a private hobby.cite news |last = Silberman |first = Steve |title = Don t Try This at Home |publisher = Wired Magazine |date = 2006 07 |url = http://www.wired.com/wired/archive/14.06/chemistry.html …   Wikipedia

  • Outline of organic chemistry — Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of carbon based compounds, hydrocarbons, and their… …   Wikipedia

  • Turkish Journal of Chemistry —   Titre abrégé Turk. J. Chem. Discipline Chimie Langue …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»